Part Number Hot Search : 
2SK3313 P1103 K1526D FCL20A01 ACT32 MC54F280 IDT5T9 MV363VCN
Product Description
Full Text Search
 

To Download V23990-P587-A208-PM Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  v23990-p587-*2*-pm flow1 600v/75a 3~rectifier, optional brc, inverter, ntc very compact housing, easy to route igbt! / emcon4 technology for low saturation losses and improved emc behaviour industrial drives embedded drives v23990-p587-a20-pm V23990-P587-A208-PM v23990-p587-c20-pm v23990-p587-c20y-pm t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 33 t c =80c 47 t p =10ms 50 hz half sine wave t h =80c 37 t c =80c 60 maximum junction temperature t j max 150 c inverter transistor t h =80c 54 t c =80c 72 t h =80c 90 t c =80c 136 t sc t j 150c 6 s v cc v ge =15v 360 v v ce i c w a 225 t j =t j max t j =t j max v ce 1200v, t j t op max v ge i cpulse t j max v c a 175 600 a v t p limited by t j max collector-emitter break down voltage dc collector current power dissipation per igbt maximum junction temperature short circuit ratings turn off safe operating area pulsed collector current t j =t j max t j =t j max p tot a features flow1 target applications schematic dc forward current surge forward current t j =25c 310 i2t-value maximum ratings i fav a 2 s i fsm condition input rectifier diode 250 a w power dissipation per diode i 2 t p tot gate-emitter peak voltage types 225 20
v23990-p587-*2*-pm t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition inverter diode t h =80c 42 t c =80c 56 t h =80c 63 t c =80c 95 brake transistor t h =80c 40 t c =80c 51 t h =80c 63 t c =80c 96 t sc t j 150c 6 s v cc v ge =15v 360 v brake diode t j =25c 600 t h =80c 18 t c =80c 23 t h =80c 28 t c =80c 42 thermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm cti >200 v c w v c 600 a v v 600 t j max i frm p tot t j max t j =t j max short circuit ratings turn off safe operating area dc collector current power dissipation per igbt a 150 175 maximum junction temperature t j =t j max 20 a 150 v ce 1200v, t j t op max gate-emitter peak voltage p tot v ge t p limited by t j max v ce i cpuls i c collector-emitter break down voltage pulsed collector current maximum junction temperature peak repetitive reverse voltage repetitive peak forward current power dissipation per diode w 175 c power dissipation per diode p tot dc forward current i f repetitive peak forward current i frm t j =t j max a i f v rrm t j =25c a maximum junction temperature t j max 175 t j =t j max t p limited by t j max dc forward current peak repetitive reverse voltage w a a t p limited by t j max v rrm t j =t j max t j =t j max -40+(tjmax - 25) c storage temperature t stg -40+125 c comparative tracking index insulation voltage creepage distance t op operation temperature under switching condition clearance 40 150 copyright vincotech 2 revision: 2
v23990-p587-*2*-pm parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 1,31 1,30 tj=125c 1,33 1,37 tj=25c 0,92 tj=125c 0,82 tj=25c 7,81 tj=125c 10,08 tj=25c tj=150c 2 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1 ,91 thermal resistance chip to heatsink per chip r thjh preapplied phase change material 1,63 tj=25c 5 5,8 6,5 tj=125c tj=25c 1,05 1,64 1,85 tj=125c 1,83 tj=25c 0,0038 tj=125c tj=25c 600 tj=125c tj=25c 135 tj=125c 137 tj=25c 23 tj=125c 29 tj=25c 175 tj=125c 204 tj=25c 50 tj=125c 69 tj=25c 1,00 tj=125c 2,00 tj=25c 1,60 tj=125c 2,13 thermal resistance chip to heatsink per chip r thjh 1,15 thermal resistance chip to heatsink per chip r thjh 0,89 tj=25c 1,2 1,84 1,9 tj=125c 1,92 tj=25c 65 tj=125c 71 tj=25c 136 tj=125c 258 tj=25c 2,99 tj=125c 6,43 di(rec)max tj=25c 2980 /dt tj=125c 2197 tj=25c 0,634 tj=125c 1,339 thermal resistance chip to heatsink per chip r thjh 1,51 thermal resistance chip to heatsink per chip r thjh 1,27 preapplied phase change material thermal grease thickness 50um = 1 w/mk p reapplied phase change material k/w tj=25c 470 - 4620 v 75 15 0 t r t d(off) v ce =v ge thermal grease thickness 50um = 1 w/mk q gate erec c oss c rss q rr t rr i ges t f e on e off t d(on) i rrm v f v ge(th) v ce(sat) i ces r gint input capacitance output capacitance turn-off energy loss per pulse integrated gate resistor inverter transistor gate emitter threshold voltage value c onditions characteristic values forward voltage threshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t input rectifier diode 50 5 0 50 v v m ma r everse current i r c mws a/s k/w k/w f=1mhz rgon=8 0 2 0 15 rgoff=8 0 7 5 50 15 turn-on energy loss per pulse reverse recovered charge inverter diode peak reverse recovery current r everse transfer capacitance diode forward voltage gate charge c ies reverse recovery time reverse recovered energy peak rate of fall of recovery current collector-emitter cut-off current incl. diode fall time turn-off delay time turn-on delay time rise time gate-emitter leakage current collector-emitter saturation voltage 600 25 0 480 50 75 0,0012 300 300 1600 rgon=8 137 2 88 v ns a nc na k/w v ma mws ns pf k/w t j=25c copyright vincotech 3 revision: 2
v23990-p587-*2*-pm parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max value c onditions characteristic values tj=25c 5 5,8 6,5 tj=125c tj=25c 1,05 1,50 1,85 tj=125c 1,71 tj=25c 0,04 tj=125c 1 tj=25c 600 tj=125c - tj=25c 162 tj=125c 164 tj=25c 9 tj=125c 11 tj=25c 351 tj=125c 393 tj=25c 83 tj=125c 108 tj=25c 0,161 tj=125c 0,223 tj=25c 0,478 tj=125c 0,560 thermal resistance chip to heatsink per chip r thjh 1,497 thermal resistance chip to heatsink per chip r thjh 1,27 tj=25c 1,25 1,45 1,95 tj=125c 1,30 tj=25c 27 tj=125c tj=25c 17 tj=125c 20 tj=25c 22 tj=125c 145 tj=25c 0,46 tj=125c 0,46 di(rec)max tj=25c 2451 /dt tj=125c 1404 tj=25c 0,084 tj=125c 0,171 thermal resistance chip to heatsink per chip r thjh 3,41 thermal resistance chip to heatsink per chip r thjh 2,97 b tj=25c vincotech ntc reference b-value 3950 k b (25/100) tj=25c 3996 k tj=25c b-value b (25/50) tol. 3% v v a n s a/s a mws c v k/w k/w % 22000 5 - 5 93 tj=25c 2 200 tj=25c 310 collector-emitter cut-off incl diode gate emitter threshold voltage 50 0,0008 gate-emitter leakage current i ces v ge(th) v ce(sat) collector-emitter saturation voltage gate charge input capacitance q gate reverse transfer capacitance e off turn-on energy loss per pulse r gint turn-off energy loss per pulse rise time turn-on delay time t f fall time t d(on) t r turn-off delay time t d(off) peak rate of fall of recovery current peak reverse recovery current reverse recovered charge c oss e on output capacitance c rss c ies integrated gate resistor k/w nc k/w brake transistor mw/k p ower dissipation p mw rated resistance r power dissipation constant deviation of r25 ? r/r i ges 0 15 rgon=16 rgoff=16 v ce =v ge f=1mhz 15 0 0 20 50 m a na ns pf mws v f i r i rrm diode forward voltage reverse leakage current 15 brake diode reverse recovery energy t rr q rr e rec reverse recovery time thermistor thermal grease t hickness 50um = 1 w/mk r gon=16 rgon=16 thermal grease t hickness 50um = 1 w/mk p reapplied phase change material 300 20 20 600 600 300 25 tj=25c tj=25c tj=25c tj=25c 200 3140 preapplied phase change material copyright vincotech 4 revision: 2
v23990-p587-*2*-pm figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 o utput inverter igbt figure 4 output inverter fwd typical transfer characteristics t ypical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v output inverter typical output characteristics 0 50 100 150 200 0 1 2 3 4 5 v ce (v) i c (a) 0 10 20 30 40 50 60 70 80 0 2 4 6 8 10 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 60 70 80 0 0,25 0,5 0,75 1 1,25 1,5 1,75 2 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 50 100 150 200 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 5 revision: 2
v23990-p587-*2*-pm figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses t ypical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 300 v v ce = 300 v v ge = 15 v v ge = 15 v r gon = 8 i c = 75 a r goff = 8 figure 7 o utput inverter fwd figure 8 output inverter fwd typical reverse recovery energy loss t ypical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 300 v v ce = 300 v v ge = 15 v v ge = 15 v r gon = 8 i c = 75 a output inverter e on high t e off high t e on low t e off low t 0 1 2 3 4 5 6 0 20 40 60 80 100 120 140 160 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 1 2 3 4 5 6 0 5 10 15 20 25 30 35 r g ( w ) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0,4 0,8 1,2 1,6 0 40 80 120 160 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0,5 1 1,5 2 0 5 10 15 20 25 30 35 r g ( w ) e (mws) 25 / 125 25 / 125 25 / 125 25 / 125 copyright vincotech 6 r evision: 2
v23990-p587-*2*-pm figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a t ypical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ce = 300 v v ce = 300 v v ge = 15 v v ge = 15 v r gon = 8 i c = 75 a r goff = 8 figure 11 o utput inverter fwd figure 12 output inverter fwd typical reverse recovery time as a t ypical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 300 v v r = 300 v v ge = 15 v i f = 75 a r gon = 8 v ge = 15 v output inverter t doff t f t don t r 0,00 0,01 0,10 1,00 0 20 40 60 80 100 120 140 160 i c (a) t ( m s) t j = t jmax -25c t rr t j = 25c t rr 0 0,1 0,2 0,3 0,4 0,5 0 8 16 24 32 r g on ( w ww w ) t rr ( m s) t doff t f t don t r 0,00 0,01 0,10 1,00 0 5 10 15 20 25 30 35 r g ( w ww w ) t ( m s) t j = t jmax -25c t rr t rr t j = 25c 0 0,1 0,2 0,3 0,4 0,5 0 35 70 105 140 i c (a) t rr ( m s) 25 / 125 25 / 125 copyright vincotech 7 r evision: 2
v23990-p587-*2*-pm figure 13 output inverter fwd figure 14 output inverter fwd typical reverse recovery charge as a t ypical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at at t j = 25/125 c t j = 25/125 c v ce = 300 v v r = 300 v v ge = 15 v i f = 75 a r gon = 8 v ge = 15 v figure 15 o utput inverter fwd figure 16 output inverter fwd typical reverse recovery current as a t ypical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 300 v v r = 300 v v ge = 15 v i f = 75 a r gon = 8 v ge = 15 v output inverter t j = t jmax - 25c i rrm t j = 25c i rrm 0 50 100 150 0 8 16 24 32 r gon ( w ww w ) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 1,5 3 4,5 6 7,5 9 0 5 10 15 20 25 30 35 r g on ( w ) q rr ( m c) t j = t jmax -25c i rrm t j = 25c i rrm 0 20 40 60 80 0 30 60 90 120 150 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 1,5 3 4,5 6 7,5 9 0 35 70 105 140 i c (a) q rr ( m c) 25 / 125 25 / 125 25 / 125 25 / 125 copyright vincotech 8 r evision: 2
v23990-p587-*2*-pm figure 17 output inverter fwd figure 18 output inverter fwd typical rate of fall of forward t ypical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c ) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 300 v v r = 300 v v ge = 15 v i f = 75 a r gon = 8 v ge = 15 v figure 19 o utput inverter igbt figure 20 output inverter fwd igbt transient thermal impedance f wd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 1,06 k/w rthjh = 0,89 k/w r thjh = 1,51 k/w rthjh = 1,27 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) 0,08 3,9e+00 3,26 3,9e+00 0,09 3,9e+00 3,32 3,9e+00 0,31 5,3e-01 0,45 5,3e-01 0,41 5,0e-01 0,43 5,0e-01 0,57 1,4e-01 0,11 1,4e-01 0,60 1,2e-01 0,11 1,2e-01 0,16 1,5e-02 0,01 1,5e-02 0,29 1,9e-02 0,02 1,9e-02 0,04 9,3e-04 0,00 9,3e-04 0,06 2,6e-03 0,00 2,6e-03 0,07 2,9e-04 0,00 2,9e-04 phase change material phase change material thermal grease phase change material thermal grease phase change material output inverter t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z th-jh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di rec /dt 0 1000 2000 3000 4000 5000 6000 0 5 10 15 20 25 30 35 r gon ( w ww w ) di rec / dt (a/ m s) di 0 /dt 0 800 1600 2400 3200 0 50 100 150 i c (a) di rec / dt (a/ m m m m s) di rec /dt di 0 /dt 25 / 125 25 / 125 copyright vincotech 9 r evision: 2
v23990-p587-*2*-pm figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a c ollector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 175 c t j = 175 c v ge = 15 v figure 23 o utput inverter fwd figure 24 output inverter fwd power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 175 c t j = 175 c output inverter 0 25 50 75 100 125 150 175 0 35 70 105 140 175 t h ( o c) p tot (w) 0 17 34 51 68 85 0 35 70 105 140 175 t h ( o c) i c (a) 0 26 52 78 104 130 0 50 100 150 200 t h ( o c) p tot (w) 0 15 30 45 60 75 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 10 revision: 2
v23990-p587-*2*-pm figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function g ate voltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q ge ) at at d = single pulse i c = 75 a t h = 80 oc v ge = 15 v t j = t jmax oc figure 27 o utput inverter igbt figure 28 output inverter igbt short circuit withstand time as a function of typical short circuit collector current as a function of gate-emitter voltage gate-emitter voltage t sc = f(v ge ) v ge = f(q ge ) at at v ce = 600 v v ce 600 v t j 150 oc t j = 150 oc output inverter v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100ms dc 10 0 10 3 0 4 8 12 16 0 100 200 300 400 500 q g (nc) v ge (v) 120v 480v 3 5 7 9 11 13 10 11 12 13 14 15 v ge (v) t sc (s) 300 500 700 900 1100 1300 12 14 16 18 20 v ge (v) i c (sc) copyright vincotech 11 revision: 2
v23990-p587-*2*-pm figure 29 igbt reverse bias safe operating area i c = f(v ce ) at t j = t jmax -25 oc u ccminus =u ccplus switching mode : 3 level switching 0 40 80 120 160 0 100 200 300 400 500 600 700 v ce (v) i c (a) i c max v ce max i c module i c chip copyright vincotech 12 revision: 2
v23990-p587-*2*-pm figure 1 brake igbt figure 2 brake igbt typical output characteristics t ypical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 b rake igbt figure 4 brake fwd typical transfer characteristics t ypical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v brake 0 25 50 75 100 125 150 0 1 2 3 4 5 v ce (v) i c (a) 0 10 20 30 40 50 0 2 4 6 8 10 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 0 0,5 1 1,5 2 2,5 3 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 25 50 75 100 125 150 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 13 revision: 2
v23990-p587-*2*-pm figure 5 brake igbt figure 6 brake igbt typical switching energy losses t ypical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 300 v v ce = 300 v v ge = 15 v v ge = 15 v r gon = 16 i c = 50 a r goff = 16 figure 7 b rake fwd figure 8 brake fwd typical reverse recovery energy loss t ypical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 300 v v ce = 300 v v ge = 15 v v ge = 15 v r gon = 16 i c = 50 a brake t j = t jmax - 25c e rec t j = 25c e rec 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0 20 40 60 80 100 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0,1 0,2 0,3 0,4 0,5 0,6 0 10 20 30 40 50 60 70 r g ( w ww w ) e (mws) t j = t jmax -25c e off e on t j = 25c e on e off 0 0,5 1 1,5 2 2,5 3 3,5 4 0 20 40 60 80 100 i c (a) e (mws) t j = t jmax -25c e off e on e on t j = 25c e off 0 0,5 1 1,5 2 2,5 3 3,5 0 10 20 30 40 50 60 70 r g ( w ww w ) e (mws) 25 / 125 25 / 125 25 / 125 25 / 125 copyright vincotech 1 4 revision: 2
v23990-p587-*2*-pm figure 9 brake igbt figure 10 brake igbt typical switching times as a t ypical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ce = 300 v v ce = 300 v v ge = 15 v v ge = 15 v r gon = 16 i c = 50 a r goff = 16 figure 11 b rake igbt figure 12 brake fwd igbt transient thermal impedance f wd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at d = tp / t at d = tp / t r thjh = 1,50 k/w r thjh = 1,27 k/w r thjh = 3,41 k/w r thjh = 2,97 k/w thermal grease phase change material thermal grease phase change material brake t doff t f t don t r 0,00 0,01 0,10 1,00 0 20 40 60 80 100 i c (a) t ( m s) t doff t f t don t r 0,00 0,01 0,10 1,00 0 10 20 30 40 50 60 70 r g ( w ww w ) t ( m s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 copyright vincotech 15 revision: 2
v23990-p587-*2*-pm figure 13 brake igbt figure 14 brake igbt power dissipation as a c ollector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 175 oc t j = 175 oc v ge = 15 v figure 15 b rake fwd figure 16 brake fwd power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 175 oc t j = 175 oc brake 0 25 50 75 100 125 0 35 70 105 140 175 t h ( o c) p tot (w) 0 10 20 30 40 50 60 0 35 70 105 140 175 t h ( o c) i c (a) 0 10 20 30 40 50 60 0 35 70 105 140 175 th ( o c) p tot (w) 0 5 10 15 20 25 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 16 revision: 2
v23990-p587-*2*-pm figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as d iode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 s d = t p / t r thjh = 1,91 k/w r thjh = 1,63 k/w figure 3 r ectifier diode figure 4 rectifier diode power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 150 oc t j = 150 oc phase change material thermal grease input rectifier bridge 0 20 40 60 80 100 120 0,0 0,3 0,6 0,9 1,2 1,5 1,8 2,1 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 15 30 45 60 75 90 0 50 100 150 t h ( o c) p tot (w) 0 8 16 24 32 40 48 56 0 30 60 90 120 150 t h ( o c) i f (a) copyright vincotech 17 revision: 2
v23990-p587-*2*-pm figure 1 thermistor figure 2 thermistor typical ntc characteristic t ypical ntc resistance values as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 25 45 65 85 105 125 t (c) r/  [ ] w = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - 25 1 00/25 11 2 5 )( tt b ertr copyright vincotech 18 revision: 2
v23990-p587-*2*-pm t j 125 c r gon 4  r goff 4  figure 1 o utput inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of tdon, t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = -15 v v ge (0%) = -15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 100 a i c (100%) = 100 a t doff = 0,29 s t don = 0,11 s t eoff = 0,67 s t eon = 0,39 s figure 3 o utput inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 100 a i c (100%) = 100 a t f = 0,11 s t r = 0,03 s switching definitions output inverter general conditions = = = i c 1% v ce 90% v ge 90% -40 -20 0 20 40 60 80 100 120 140 -0,4 -0,2 0 0,2 0,4 0,6 0,8 time (us) % t doff t eoff v ce i c v ge i c10% v ge10% t don v ce 3% -25 0 25 50 75 100 125 150 175 200 4,8 5 5,2 5,4 5,6 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -20 0 20 40 60 80 100 120 140 0,1 0,2 0,3 0,4 0,5 0,6 time (us) % v ce i c t f i c10% i c90% -25 0 25 50 75 100 125 150 175 200 5 5,1 5,2 5,3 5,4 5,5 time(us) % t r v ce i c copyright vincotech 19 revision: 2
v23990-p587-*2*-pm figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 59,91 kw p on (100%) = 59,91 kw e off (100%) = 8,87 mj e on (100%) = 12,48 mj t eoff = 0,67 s t eon = 0,39 s figure 7 o utput inverter igbt turn-off switching waveforms & definition of t rr v d (100%) = 600 v i d (100%) = 100 a i rrm (100%) = -83 a t rr = 0,51 s switching definitions output inverter i c 1% v ge 90% -20 0 20 40 60 80 100 120 -0,2 0 0,2 0,4 0,6 0,8 time (us) % p off e off t eoff v ce 3% v ge 10% -20 20 60 100 140 180 4,9 5 5,1 5,2 5,3 5,4 5,5 time(us) % p on e on t eon i rrm 10% i rrm 90% i rrm 100% t rr -120 -80 -40 0 40 80 120 5 5,2 5,4 5,6 5,8 time(us) % i d v d fitted copyright vincotech 20 revision: 2
v23990-p587-*2*-pm figure 8 output inverter fwd figure 9 output inverter fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 100 a p rec (100%) = 59,91 kw q rr (100%) = 20,73 c e rec (100%) = 7,85 mj t qrr = 1,03 s t erec = 1,03 s switching definitions output inverter t qrr -100 -50 0 50 100 150 4,8 5 5,2 5,4 5,6 5,8 6 6,2 6,4 % i d q rr time(us) -20 0 20 40 60 80 100 120 4,8 5 5,2 5,4 5,6 5,8 6 6,2 6,4 time(us) % p rec e rec t erec copyright vincotech 21 revision: 2
v23990-p587-*2*-pm in datamatrix as in packaging barcode as p587-a20-pm p587-a20-pm p587-a208-pm p587-a208-pm p587-c20-pm p587-c20-pm p587-c20y-pm p587-c20y-pm a version c version 3-leg 3-leg pin x y 1 52,55 0 2 47,7 0 3 44,8 0 4 37,8 0 5 37,8 2,8 6 35 0 7 35 2,8 8 28 0 9 25,2 0 10 22,4 0 11 19,6 0 12 16,8 0 13 14 0 14 11,2 0 15 8,4 0 16 5,6 0 17 2,8 0 18 0 0 19 0 28,5 20 2,8 28,5 pin x y pin x y 21 7,5 28,5 25 29 28,5 29 52,55 25 22 14,5 28,5 26 31,8 28,5 30 52,55 16,9 23 17,3 28,5 27 36,5 28,5 31 52,55 8,6 24 22 28,5 28 43,5 28,5 32 52,55 2,8 pinout ordering code & marking ordering code and marking - outline - pinout features version 17mm housing with solder pins and breake 12mm housing with solder pins and breake 17mm housing with solder pins w/o breake outline v23990-p587-c20-pm inverter igbt inverter fwd ordering code pin table 17mm housing with pressfit pins w/o breake v23990-p587-c20y-pm pin table pin table v23990-p587-a20-pm V23990-P587-A208-PM w/o pin 1,31,32 rectifier break igbt break fwd
v23990-p587-*2*-pm disclaimer life support policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright vincotech 23 revision: 2


▲Up To Search▲   

 
Price & Availability of V23990-P587-A208-PM

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X